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An Apparent Conflict in Experiment

The recent null oscillation results of the MiniBooNE experiment seem to
refute the positive oscillation results of LSND.

Significant differences between the two experiments:

Baseline to energy (L/E) is the same, but MiniBooNE is at an order of
magntiude higher energy
The primary analyses for the experiments used anti-neutrinos (LSND)
and neutrinos (MiniBooNE)
The results are different – LSND found oscillations, MiniBooNE did
not
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A Possible Resolution

We introduce a model built on a U(1)B-L gauge interaction. Features of the
model:

An MSW-like potential that suppresses oscillations at high energy
A 3+3 model, to include neutrino masses
Can fit oscillations at LSND and MiniBooNE
A low energy excess at MiniBooNE comes out of the model naturally
High potential to see oscillations in anti-neutrinos at MiniBooNE
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The LSND Experiment

Searched for both ν̄µ → ν̄e and νµ → νe oscillations
Baseline of 30 m from target to detector. The neutrino mass sensitivity
in standard oscillation models is governed by (L/E)−1:

(L/E)−1 ∼ 0.1− 1.0 eV2

The experiment found oscillations:

P(ν̄µ → ν̄e) = 0.264%± 0.081%
P(νµ → νe) = 0.26%± 0.11%
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The MiniBooNE Experiment

Searched for νµ → νe oscillations, and was designed to refute or
confirm the results of LSND
Covered the (L/E)−1 range of LSND, but with an energy range of 200
to 3000 MeV
A speculative excess below 475 MeV was seen, but the source is
unclear
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The Effects of a U(1)B−L Gauge Interaction in the Neutrino Sector

A new flavor universal potential in matter
- MSW-like, dependent on the B-L charge density in matter
- Can generate large potential, V � VMSW

A large potential suppresses oscillations at high energy
- Can explain MiniBooNE

Need B-L to be spontaneously broken
- Dirac masses respect the symmetry
- Majorana masses do not – can use the scalar φ that breaks the gauge

symmetry to generate them

Sterile neutrinos are needed
- To give the neutrinos masses
- To make the potential non-universal
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Interactions in the Model

Uses a spontaneously broken U(1)B−L gauge interaction with a light
vector (mγ < me) and weak coupling (g� 1)
Expand the Hamiltonian to leading order in the neutrino masses

H ≈ E +
1

2E
M†M+ V

WriteH in the flavor basis
Build the potential matrix V and mass matrixM



Introduction The Model Numerical Results Summary

The Potential Term

The strength of the potential is

V =
g2

4m2
γ

ρB-L

with sign (-) for active and (+) for sterile. The potential matrix V is, with I3
the 3-dimensional identity,

V =
(
−V · I3 0

0 V · I3

)
Electroweak constraints – we will be interested in the region:

V > 10−9 eV
mγ < me

ρB−L = 1028 charges/m3

The strongest constraint comes from g-2 of the electron:

g ≤ 9 · 10−6 ⇒ mγ < 1.8 keV



Introduction The Model Numerical Results Summary

Neutrino masses

Neutrino mass terms:

Dirac mijνiNj + h.c.

Majorana λijφNiNj + h.c.

If φ is doubly charged, the Majorana mass terms do not break the gauge
symmetry and the Majorana masses are

Mij = λij
〈
φ
〉

The sterile neutrino flavor basis is irrelevant – use a basis where the
Majorana mass matrixMs is diagonal:

Ms =

 M1 0 0
0 M2 0
0 0 M3
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The neutrino mass matrix

The model is much simpler if the Dirac masses are degenerate – then in
some basis, the Dirac mass matrix is proportional to the identity

M
′

d = m · I3

There are 3 real angles ϕi needed to rotate the flavor basis into this one –
they are parameters of the model. In the same basis, the total mass matrix is
simple:

M
′

=
(

0 m · I3
m · I3 Ms

)
and

M
′†M

′
=
(

m2 · I3 mMs

mMs M2
s

)
which is 2-by-2 block diagonal.
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The Hamiltonian and Mixing

The complete Hamiltonian for the system in the rotated flavor basis (where
Md is diagonal) is:

H
′

= E +
m2

2E
+

1
2E

(
−2VE mMs

mMs 2VE +M2
s

)
We have a mini-seesaw effect – one regulated by the size of V .
The last term inH′

is diagonalized by the three mixing angles given by

tan 2θi =
2mMi

4VE + M2
i

We analyze oscillations between two active flavors numerically. Since
oscillations are suppressed when θi → 0, we study limits of the mixing angle
to pick a favorable region of parameter space to fit LSND and MiniBooNE.
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Oscillations Between Active Flavors

If the Mi are of the same order, then the following limits have θi → 0 and
completely suppress oscillations:

VE � m2,M2
i — the MiniBooNE limit

m2 � VE,M2
i M2

i � VE,m2

To see oscillations at LSND, these limits give a region for numerical
analysis:

m2 . M2
i ∼ VELSND

which ensures that at MiniBooNE, the high energy limit is in effect:

m2 ∼ M2
i � VEMB

We pick values for the three angles φi, and take the value of m from the
sensitivity range set by (L/E)−1 for LSND and MiniBooNE.
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Results for Oscillations at LSND

LSND oscillations for ν̄ (left) and ν (right)
Contours are at the limits set by LSND

Oscillation Percentage
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Results for MiniBooNE

MiniBooNE oscillations above (left) and below (right) 475 MeV
Contours are at P(νµ → νe) = 0.05%

A low energy excess, like that seen at MiniBooNE, comes naturally in the
model – need to fit to the oscillation probability corresponding to the excess.
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More on MiniBooNE: Low Energy Excess

The low energy excess qualitatively fits -
for both ν (left) and ν̄ (right):

Therefore, we can fit to the excess seen at MiniBooNE
in νµ → νe oscillations
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MiniBooNE and ν̄ Oscillations

Even though MiniBooNE is at higher energy, the reversal in sign of V
enhances oscillations. Therefore, MiniBooNE could see ν̄µ → ν̄e

oscillations:

A numerical study is needed to definitively say what the spectrum of
predictions for MiniBooNE ν̄ oscillations is – but we expect to see

oscillations there
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Oscillations at Other Experiments

Many other oscillation experiments, especially atmospheric and differ from
LSND and MiniBooNE in significant ways:

In many experiments, neutrinos either do not propagate through matter
or do so only over a limited baseline, mitigating the effect of the
potential term
The sensitivity range of the experiment, determined by (L/E)−1, is not
the same as LSND and MiniBooNE – thus much of the oscillations
average out
The current theory works very well to describe these experiments – our
model must integrate with the current oscillation model to fit a larger
range of experiments

Other experiments will have an impact on the model, most likely in
determining the secondary parameters φi or the scales of the Majorana
masses
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Conclusions

We have presented a model for neutrino oscillations that accommodates
the results of LSND and MiniBooNE
A potential provided by U(1)B−L, much stronger than VMSW , can give
strong energy dependence for oscillations
Lower energy experiments at the same (L/E)−1 typically see more
oscillations than higher energy experiments
The low energy excess seen at MiniBooNE comes naturally in the
model
Anti-neutrinos and neutrinos behave very differently
We expect MiniBooNE to see oscillations in ν̄
See our forthcoming paper

Thanks to the organizers for this wide-ranging and informative conference



Appendix

Extra Slides

The oscillation probability can be written concisely if we assume sinφ3 = 1.
Then the probability for oscillation between the first two active flavors, at
fixed baseline and energy, is:

P1→2(L,E) = 4 cos2 φ2 sin2 φ2

h
cos2 φ1A13 + sin2 φ1A23 − cos2 φ1 sin2 φ1A12

− cos4 φ1A11 − sin4 φ1A22 − A33

i

Aij = cos2 θi cos2 θj sin2
h
γ
“Mi

m
tan θi −

Mj

m
tan θj

”i
+ sin2 θi sin2 θj sin2

h
γ
“Mi

m
cot θi −

Mj

m
cot θj

”i
+ cos2 θi sin2 θj sin2

h
γ
“Mi

m
tan θi +

Mj

m
cot θj

”i
+ sin2 θi cos2 θj sin2

h
γ
“Mi

m
cot θi +

Mj

m
tan θj

”i

γ =
m2L

E
tan 2θi =

2mMi

4VE + M2
i
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